AD-A0B0 180

UNCLASSIFIED

GEORGE WASHINGTON UNIV WASHINGTON D C PROGRAM IN LOG==EYC F/¢ 12/1
LOCATING AN ISOLATED GLOBAL MINIMIZER OF A CONSTRAINED NONCONVE==ETC(U)
SEP 79 6 P MCCORMICK NOOO14=75-C=0729
SERIAL=T=409 NL




== = 2

—
=
=
—
2
-—
B
==
=
{oe]
=
i
[6,]

=il
|
T
L

23 flie e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




LEVEL”

THE
GEORGE

WASHINGTON
UNIVERSITY

'«m:m% AT G '

o
a0
=
o
o0
S
T}
=

STUDENTS FACULTY STUDY R
ESEARCH DEVELOPMENT FUT
URE CAREER CREATIVITY CC
MMUNITY LEADERSHIP TECH
NOLOGY FRONTI
ENGINEERING APPE

DDC
@[?ﬂnnr?

FEB 5 1980

LOULUULE
B

DISTRIBUTION STATEMENT A

| Approved for public release;
Distribution Unlimited




(67 »OCATING AN ISOLATED SLOBAL mINIMIZER ,'
‘\ OF A CONSTRAINED NONCONVEX PROGRAM

i - ["
by
f!gg}; Garth P. /McCormlck /
\ W
{ m}
| Serial T-409 @ £ :C {
“!1 27 Sepﬂ l SR
\}_.-"/ P =
pe .y &
¥y, SE fl/’f"m /J
\\ VEQ;.. Boa—

The George Washington University
School of Engineering and Applied Science
Institute for Management Science and Engineering

Program in Logistics

Air Force Office of Scientific Research
Contrac UAF R-73 25 4

Office of aval Re \l’ i
Contracthg 14~75-C-0729 A_"/} !

( jf ’L
3
This document has been approved for public i
sale and release; its distribution is unlimited
r 47/ p*
08 X
T ERER— RAL PRy ¥ T o L NG




W

NONE ‘
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
READ INSTRUCTIONS
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
. T-409 5
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
LOCATING AN ISOLATED GLOBAL MINIMIZER SCIENTIFIC
OF A CONSTRAINED NONCONVEX PROGRAM 6. PERFORMING ORG. REPORT NUMBER
T-409
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(a)
AFOSR 73 2504 v
‘ GARTH P. McCORMICK N00014-75-C-0729
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::g2n&”\v‘oERLKE'JSrTT'NPu.:aoé’zEgsT' TASK
THE GEORGE WASHINGTON UNIVERSITY /
INSTITUTE FOR MANAGEMENT SCIENCE & ENGINEERING
WASHINGTON, DC 20052
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
OFFICE OF NAVAL RESEARCH AFOSR, BLDG 410 27 SEPTEMBER 1979
CODE 434 BOLLING AIR FORCE BASE [ '3- NUMBER °'lg‘°ss
ARLINGTON, VA 22217 WASHINGTON, DC 20032
T4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of thie report)
NONE
15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)

DISTRIBUTION IS UNLIMITED: RELEASED FOR PUBLIC SALE.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse eide if v and 1 ity by block number)

NONCONVEX PROGRAMMING
NONLINEAR PROGRAMMING

> 20. ABSTRACT (Continue on reverse side If y and identify by block number)

[~ Conditions are given which verify the existence and determine the
location of an isolated local constrained minimizer in a convex compact
set. An exact formula is given for the amount by which the value of the
objective function at some point differs from the value at that isolated
point. Further conditions are given which ensure that the local minimizer
is a global minimizer in the given convex compact set. 7\

N

S/N 0102-014- 6601 | SECURITY CLASSIFICATION OF THIS PA v.' (When Date Bntered)

3
i
i
H
DD , an'7s 1473  EoiTion OF 1 NoOV €8 1S OBSOLETE NONE \ ‘




THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Institute for Management Science and Engineering

Program in Logistics

Abstract 1
of
Serial T-409
27 September 1979 1

LOCATING AN ISOLATED GLOBAL MINIMIZER ‘
OF A CONSTRAINED NONCONVEX PROGRAM |

by

Garth P. McCormick

Abstract

Conditions are given which verify the existence and determine
the location of an isolated local constrained minimizer of a con-
strained nonconvex program. An exact formula is given for the amount
by which the value of the objective function at some point differs
from the value at that isolated point. Further conditions are given
which ensure that the local minimizer is a global minimizer.

ACCESSION for
Research Supported by ams White Section
DDC Buff Section
Air Force Office of Scientific Research UNANNOUNCED o
Contract AFOSR 73-2504 JUSTIFICATION
and
Office of Naval Research BY _ .
. % LS TR ,
Contract N0O0014-75-C-0723 GISTIIBUTION/AVARLABILTY CODES
Dist.___AVAIL and/or ! b
’ 3 i
B
#




THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Institute for Management Science and Engineering

LOCATING AN ISOLATED GLOBAL MINIMIZER
OF A CONSTRAINED NONCONVEX PROGRAM

by

Garth P. McCormick

1. Introduction

In [2] conditions were given under which it could be proved that the
problem
inf f£(x)
n
xe CCR ,

where C 1s a convex compact set, had only one local infimum which was
taken on at a unique point x* in C . The solution was shown to be uncon-

strained in the sense that the 1 by n derivative vanished there, i.e.,

£'(x%) =0 .

Furthermore, the amount by which the function f evaluated at some point
in C exceeded its global minimum value was given by an explicit formula.
In this paper, similar results are obtained for the equality constrained
and then the inequality constrained problem. 1In Section 2 some preliminary
lemmas are developed for the problem of solving simultaneous nonlinear equa-
tions. In Sections 3 and 4 bounds are developed for an isolated local con-
strained minimizer in C , and on the minimum value associated with that

minimizer. It is also shown that if slightly stronger conditions are placed

on the problem (verifiable) then that local minimizer is a global ome in C .
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2. Solving Nonlinear Equations—Preliminary Lemmas

Let a(z) be an Nx1 vector function which is continuously dif-

ferentiable in an open set containing a given compact convex set C C RN .

Assume that a'(z) , the NxN derivative matrix of a(z) , has an in-

verse at every point in C . Let C0 denote the interior of C . De-

fine U = {u|u=a(z) for some zeC} . Consider any point 2Z€ C0 . Put

4 = a(z) . It follows from the inverse function theorem that there ex-

ists an open set ec CO containing Z , an open set tcu containing a, A

and a continuously differentiable function g(°*) defined on U such that

gla(z)] =z, for 2z in ¢ ; alg(u)] =u, for u in 0.

Lemma 1. Suppose for some zot-: Co o
= (] -1
N(z,) = {z,-a'(y) "a(z,) |yeclcc. (1)
0 0 0 =
Then:
a(zo)t €U, forall t such that 0<t<1l, (2)

and there exists a point z* in N(zo) such that
a(z*) =0 . (3)

Proof: Let t be the smallest value greater than or equal to zero such

that g[a(zo)t] is defined for 0<t<t<1l . (Clearly t<1 , since

zy € C0 and because of the inverse function theorem.) Assume t is such

that 0<t<t<l . Now

dgla(z)1/da = a' ()L .

Thus,
1
gla(zp)t] = gla(zy)] +(f) {dgla(z,) (1-8) + (z)st]/da}ds a(zy)(t-1)
1 (4)
=z - é’ a' [g{a(zo) (l-s-i-st)}]-lds a(zO) (1-t) .

(Note because 0 < t < l-s+st < 1 , g{a(zo)(l-s+st)} is defined and in C .) i f

AV
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Now,

; =z, - féa'[g{a(zo)(l-s+st)}]—1ds a(zo) (5)

is in C . To see this, assume the contrary. Because C is a convex set,

there would exist a nyperplane (a,B) which separates y from C with the
properties that

az - B <0 forall ze C,
(6)

if az-8>0 Z G,

and

AA

ay -

™ >

>0 .

~

Using (5) and the mean value theorem, there is an s where

0 j_; <1 such that
~ ~ ~ -1 ~
a[zo-a'[g{a(zo)(l-s+st)}] a(zo)] -B>0.

(Note because t < 1 - s + st et g{a(zo)(l-s+st)} is defined and in C .)

ot + ¥(1-t) gives
(4). Since C is a convex set and 0<t<1 , and zoe C0 , (4) is also con-

g, - o
tained in C . Since a'(z) is continuous it follows that g[a(zo)t] € G

Using (6) this contradicts (1). Thus y e C. Now z

If t >0 the same reasoning as above implies g[a(zO)E] € C0 , and the

inverse function theorem implies the existence of values less than t and

close to it for which a(zo)t € U. By contradiction then, t = 0 . This

proves (2) and (3).




3. The Equality Constrained Problem

The equality constrained nonlinear programming problem can be written

minimize f£(x)

7
subject to x € R = {x|hj(x) =0, for j=1l,...,p} and x ¢ Cx 7

where Cx is a compact convex subset of R" . The functions f , {hj} are
assumed to be twice continuously differentiable in an open set containing Cx .
The vector h(x) is the p by 1 vector whose jth component is hj(x) . The

following development will be general in that the particular numerical method
for generating the null space of h'(x) (the p by n derivative matrix
of h(x)) will not be specified.

Suppose S(x) denotes a matrix function which gives the null space
of h'(x) . That is, a necessary and sufficient condition that h'(x)z = 0
is that z = S(x)v for some v . Also associated with h'(x) 1is a

pseudo inverse h'(x)# , i.e., a matrix satisfying

h'(x) h'(x)#n'(x) = h' (x) .
Note that when the rank of h'(x) is p, h'(x)h'(xX)# =1 .

It is assumed only that S(x) and h'(x)# are related in that
[I-h* (x)#n' (x)] = S(x)W(x) for some matrix W(x) .

The Lagrangian function associated with (7) is
L(x,a) = £(x) - a'h(x) .

The vector 2z of Section 2 is to be identified with zT = (xT,aT) .

v, L(x,0) ) -
e 0TS |

is (N=(n+p)) by 1. The following result is easily obtained:

3
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(8)

’ 5 vixL(x,a) h -h'(x)T
a'(z) = -h'(x) , 0 .

Let Ca be the convex hull of {f'(x)h'(x)#T|x £ Cx} . Define
C=¢CXEC Define H(x,a) = S(x)TV2 L(x,a)S(x)
®x ko » xx ;:

Theorem 1. Suppose for every z e C ,
(i) h'(x) has full rank (equal to p)
(ii1) S(x) is a continuously differentiable n by (n-p)
matrix function generating the null space of h'(x) ,

and that

(iii) H(x,a) 1is a positive definite matrix.
Then a'(z)_l exists for all z € C and is given by

) S(x)H(x,a)—lS(x)T,—[I—S(X)H(x,a)-ls(x)TvixL(x,a)]h'(x)#
a'(z) = = b Gy (9
-h'(x)# [I—VxxL(x,a)S(x)H(x,a) S(x)],F

where

¥ = -h'(x)#T[VixL(x,a)-VixL(x,a)S(x)H(x,a)-ls(x)TvixL(x,a)]h'(x)# :

Let g(+) denote the inverse function as defined in Section 2. The
notation S(t) will mean S[g{a(zo)t}] and similar notation used for the

other quantities. Suppose Xy € Cx is given. Define a, = [f'(xo)h'(xo)#]T .

T R -
and set zy = (xo,ao) . Define N(zo) = {zo—a'(y) 1a(zo)ly € C} . Assume
further (iv) that N(zo) C C and that 2, € CO .

Then there exists a z* ¢ N(zo) such that VxL(x*,a*) =0, h(x*) =0, x*

is an isolated local minimizer to Problem (7), and

i
»
-«
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£(x%) - £(x,) = fg{thL(xo,aO)TS(t)H(t)_lS(t)TVxL(xo,ao)

(10)
+ f'(t)[I-S(t)H(t)_IS(t)TVixL(t)]h‘(t)#h(xo)}dt :

Proof: Because H(x,0) is positive definite, its inverse exists. The
remainder of the first assertion above can be verified by multiplying

the two matrices together.

The existence of z* is guaranteed by Lemma 1. Since VXL(x*,a*) =0,

(x*,a*) satisfies the first order necessary conditions for an equality con-
strained extremum. Assumption (iii) means then that the second order sufficiency

conditions for an isolated local minimizer are satisfied at x* .
From Lemma 1 it also follows that g{a(zo)t} is defined and in C
for all 0 <t <1 . Define the composite function
F(t) = flgla(zy)t}] .
Then

£(x*) = F(0) = F(1) + f‘l’ F'(t)dt, where F(1) = £(xy) -

Using the chain rule of differentiation,

F'(t) = df[g{a(zo)t}]/dt = df[g{a(zo)t}]/dz . dg{a(zo)t}/da . d[a(zo)t]/dt
' =L T ' -1 1.2
= f'(t)S(t)H(t) "S(t) VXL(xO,ao)+f (t)[I-S(t)H(t) “S(t) VxxL(t)]-

h'(t)#h(xo) =

Now h'(t)s(t) =0 , so
£1(£)S(t) = [£'(t)-a(t)h'(£)]S(t) = VxL(t)Ts(t) - thL(xo,ao)TS(t) . (11)

Using this fact completes the proof of the theorem.

|
| |

-
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4. The Inequality Constrained Problem

The notation of the previous section will be used and the preceding

results extended to the inequality constrained problem

minimize f(x)
subject to x € R = {x [hj(x);(), for Yml,.s.,m} , (12)

: n
and xE:Cx where Cx is a compact convex subset of R .

Lemma 2. If x* is an isolated local minimizer for the Problem

minimize £(x)

subject to x € {x Ihj(x);O , for j=1,...,p<m} N C, » (13)

and if x*e R , then x* is an isolated local minimizer for Problem (12).

(Note: the proof is obvious and therefore omitted.)

In what follows, conditions will be given which guarantee the
existence of an isclated local constrained minimizer in C for the
Problem (13). Without loss of generality it will be assumed that the

vector h(x) will consist of the first p functions.

Theorem 2. For the inequality constrained Problem (13) assume as in

Theorem 1. Then there exists a z* ¢ N(zo) such that vxL(x*,q*) =0,
and h(x*) =0 .

Proof: The proof of this theorem parallcls that for Theorem 1 and will not
be given. Note that it is not possible to conclude that x* is a local
minimizer for the inequality constrained problem. Several more conditions

must be placed on the problem quantities.

Corollary 1. Assume as in Theorem 2. If at x* , ao* > 0 and x* ¢ R,
then x* is an isolated local minimizer for the Problem (12).

Proof: The proof follows because under the assumptions, x* satisfies the

second order sufficiency conditions for a constrained minimizer to (13).

Using Lemma 2, the corollary is proved.

5. Conditions Under Which the Isolated Local Minimizer
Is a Global Minimizer in the Convex Compact Set

Some notation needs to be established. Let x be any point in
C,MR . Define for 0 <t <1, y(t) = x*(1-t)+xt , and

;(s,t) = x*(l-s)+[x*(1-t)+xt]s , for 0 <s < 1.
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Theorem 3. Assume as in Theorem 1. In addition the following assumptions

are made.
1f
(i) fgh'ly(t)ldt has rank p,
(ii) vaé é VixL[;(s,t),a*}dsdt v >0 for all
v # 0 where féh'[y(t)]dt v=20,
then

[5 15 7o Llv(s,0) a%ldsde , - 1 n'iy(e))Tae
1 (14)
- [5p'ly(e)lae , 0

has an inverse. Denote this by (A, BT) where A is n by n , BT is nby p .
B, D

3 1 T
If ($41), - IO £'[y(t)] dt B® > 0 , (component by component) then
f(x) > f(x*) . If (i), (ii), and (iii) hold for all x ¢ Cx , then x* is

the unique global minimizer for £ in RN Cx :
Proof: Consider the following (recall VxL(x*,a*) =0, h(x*) = 0):

J§ v Ly ,a*1\ o\ (I3 [T V2 Liy(s,t),0r]dsde , - [g n' iy Tar\ fax
= |+

- h'(x) 0 - [g n'Iy(o)lae 0 b

where Ax = (x=-x%*) , Aa = (a*-a*) =0 .

The existence of the above inverse is guaranteed by the theorem
hypotheses. It can be written explicitly after the following notational

considerations are given. Let S be any n by (n-p) matrix generating the
null space of N = fé h'[y(t)]dt . Let N# be a psueudo inverse &f

related to S in that there exists a matrix W such that [I-N#N] = sw .

- ——y e -—— B .- - ———— TN
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Let H = fé fé VxxL[y(s,t),q*]dsdt »  The explicit inverse (which is

invariant to the choice of the particular null space matrix S and pseudo

inverse N#) is then

( H, -NT)'l s(sTus) 1sT , -[1-5(s us) " LsTun#
-N, 0 -N#T[I-HS(STHS)_lST] , - N#T[H-HS(STHS)-ISTH]N#
Now

£(x) - £0x%) = [ £'[y(e)]dt ox

[5 £'y(©)1de s(s™us) IsT[T v Liy(e),axlat

- J§ £ y(o)1at B

3 v LIy(t),o*) aes (sThs) ISTS] ¥ L[y (e),ax1de

- [ ey e .

Since x e R, h(x) > 0 . Thus both terms on the right above are
nonnegative. If fé VxL[y(t),a*]TdtS#O , the first term above is > 0 .
The second term is > 0 if hj(x) >0 foroneof j=1,...,p . The
only way both terms can be equal to zero is if fé VxL[y(t),a*]TdtS =0
and h(x) =0 .

If both these conditions hold it is easy to show that Ax = x - x* =0 .
Thus f£(x) > f(x*) when x # x* .

Several interesting results come out of this analysis. There are
two estimates of the generalized Lagrange multipliers associated with a
local minimizer. The first one is

4 = f'(xo)h'(xo)# . (15)




f—
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This is used in the computation of the Lagrangian Hessian matrix. The

second estimate is
£ (%) [T-8(x JH(x,0.) Y (x ) V2 L(x.,a.1h' (x.)# (16)
0 0?8 (xp>% 0! Vxx"(Xge % B (%) -

This is the one which determines whether or not a constraint is to be
considered binding at the local solution. The latter estimate is really
the estimate of the multipliers (15) at the minimizer of f in the sub-
space h(x) = h(xo) . In algorithm development, then, the choice of

whether or not to include a constraint in the set of those considered

active should be made on the basis of (16) rather than (15).

6. Discussion and Example

The importance of the second order estimate of the multipliers was
first pointed out by Gill and Murray in their seminal paper [1]. The
estimate in (16) above corresponds exactly to their "refinement" given
in (7.4) of [1]. Their vector p there is the approximation required
to find the minimizer of the function in the equality constrained sub-

space. In the current paper this is the transpose of the vector
-£* (%, )S (x JH(x »0) 15 (x ) T
0 0 0’0 0
in (16) above.

The quantity (10) which gives the exact difference between the
value of the objective function at the minimizer in the space where

h(x) = 0 and its value at some point x, may be considered (for intui-

0
tive explanatory purposes) to consist of two parts. Let X denote the
minimizer for the problem: minimize f£(x) subject to h(x) = h(xo) .

XE€ Cx . The first term under the integral in (10) is an approximation
to f(x) - f(xo) . It is well known that the difference in the optimal

objective function value resulting from a perturbation in the right-hand
side of the constraints is approximated by the sum of the Lagrange multi-

pliers times the perturbations. The vector premultiplying h(xo) is the




-
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integral of a vector of second order multiplier estimates at unconstrained
minimizers of the form (16). This can be regarded as the appropriate
vector of Lagrange multipliers needed to approximate f(x*) - f(x) .

Thus (10) says (in effect) that f(x*) - f(xo) = [£f(%) - f(xo)] +

[£(x*) - £(x)] .

In terms of the inverse function approach X consists of the

0
gjh(xo)t .

The exact difference f(xo) - £(x) can be computed by integrating from

T T.T =T
(xo,ao) to (x

first n components of

-T. T T T
,a ) along g[(thL(xo,ao) : h(xo) )] . The exact

second term, f£(x*) - £(x) , can then be obtained by integrating from

=T =T, T T TT
»0%7)

(x ,a) to (x* along the curve g[(OT, h(xO)T)T] . The reason

that the current approach is taken is that the existence of the inverse
function along the '"diagonal path" can be checked by (1). The piecewise
two-path segment described above may not exist in the region Cx><CQ

without stronger assumptions.

The practical application of this theory is that from (1), it is
possible to place upper and lower bounds on each component of the mini-
mizer and multipliers, and from (10) it is possible to place an upper and
lower bound on the optimal objective function value. It is in general

not possible to compute the exact set N(zo) of (1) or the right-hand

side of (10). Using numerical techniques, one can compute upper and
lower bounds on the desired quantities. For the purely unconstrained
case, the computational requirements were discussed in [3]. The con-~
strained case is more complicated and a future paper will discuss the
linear algebra required to do this.

Essentially what has to be done is to replace each scalar function
required in the formulas by two numbers, an upper and a lower bound on

et oy o ey

.-

.
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the range that that scalar function can take when x 1is restricted to

Cx » and a to Ca . Techniques required to do this have, to a cer-

tain extent, been developed into a general theory of "interval arith-
metic" [4]. Every element of a vector and matrix can be systematically
replaced by two numbers. The problem becomes more difficult when an
interval inverse matrix is required, i.e., a matrix of interval ele-
ments which contains the inverse of all possible matrices implied by the

interval matrix. In order to get a set bounding (1), an interval inverse

matrix is required for a'(}')-1 , where the form taken for the constrained
problem is given by (8). 1In the following example, ad hoc procedures are
used to get the interval bounds. A few of the details are given, but the
bulk of the computations must be taken on faith.

The rules for computing intervals for the range of functions (or
interval extensions as they are sometimes called) are very simple. The
notation [a,b] is used to indicate that an upper bound on the range of
a scalar function is b and a lower bound is a . If two scalar valued

functions have interval extensions f[a,b] and [c,d] , respectively,

P then the sum has the bounds [atb,c+d] . The range on the product is
. [min(ac,ad,bc,bd), max[ac,ad,bc,bd)] . Subtraction is similar to addi-
tion. Division is similar to multiplication as long as the divisor does
H not contain zero. The other major requirement is that interval extensions

be computable for functions of a single variable operating on an interval.
In one sense this can be viewed as an optimization problem. For most

functivns of a single variable, the min and max of that function over an

interval are easily discernible. Suppose a scalar t is known to have

a range of [a,b] . Then the scalar function t2 has a range of

[min(a®,b%), max(a®,b®)] 1f 0 ¢ [a,b] , and [0, max(aZ,b®)] if
a<0<b . A scalar function which has the range [a,a] will in the
following be indicated by a for simplicity. Thus, the notation afc,d]
will indicate the range of the product of two functions, one of which has
range [a,a] , the other [c,d] . The resulting range is [min(ac,ad),
max(ac,ad)] . The major research area needing to be investigated is

obtaining an interval extension of a matrix inverse.

e e e —————— e e e
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The problem is
minimize -x + y
2 2
subject to h=-x" -y +12>0,
Cl={(x,y)|.25xi2,-2_<_y_<_—.2}.

The quantities required are

-X

_y) [2x%y5) 17t

N 2 2.1 F. ™
S=<x)(x+y) ’vxxL-(Za)'

The multiplier estimate is given by f£'(h')# = (x—y)/[2(x2+y2)] . The top

h' = (-2x, -2y) , (h")# =(

component of (h")# is -x/[2(x2+y2)] . One can show that the minimum of
this function in the rectangle is taken on at x = .2, y = -.2 and the
maximum at x = 2, y = ~2 . Thus the range of the first component is
(-1.25, -.125] . Similar considerations yield the range of the second
component to be [.125, 1.25] . The range on a is therefore

(-1)[-1.25, -.125] + (1)[.125, 1.25] = [.25, 2.5] . This then is the set

Ca .

The matrix whose inverse is desired [from (8)] is

20 0 2x
0 20 2y ’
2x 2y O

The inverse matrix has the form

2
-y Xy =-ox
xi -x2 -ay [—2<:s(x2+yz)]-1 s
2
-ax -ay o .

The interval extension of this inverse when x,y , and a are restricted
as indicated above is

e e e e

F_ | R i st




- 1k =

[.001980, 1.98020] [.019802, 1.0] [.024752, 1.25] (17)
B = [.019802, 1.0] [.001980, 1.98020] [-1.25, -.024752]
[.024752, 1.25] [-1.25, -.024752] [-15.625, -.015625]

Let (xo.yo) = [{.7, -.71] . Thus o, = .709184, h, = .0059, and

0 0
VxLO = [-.007142, -.0070102]T . Then N(zo) of Theorem 2 is contained in

X9 _ VxLo ol A -.007142
o) ¥ & = f(-.11 - B| -.007042
% 0 .709184 .0059

[ .700300, .728560] [ 0.2, 2]

= [-.717220, -.689060] } C [-2 s =0.2]
[ .608371, .717845] [ 0.25, 2.5}

which is clearly in the original rectangle of bounds.

The bound on the optimal objective function value is calculated

using (10). The first term under the integral involves S(t)H(t)-ls(t) .

' Note from (9) that this occurs, for any (x,a) , in the upper left-hand
# corner of the inverse of a' . This is thus available from (17) above.

An interval extension (for every t) of VXL(xo,ao)TS(t)H(t)-ls(t)TVxL(xo,ao)
is

[.001980, 1.98020], [0.19802, 1.0] -.007142
(-.007142, -.007042)

[0.19802, 1.0] , [.001980, 1.980201/ \-.007042

= [.000002191, .00029976] .

A term of one-half comes from the integration of a constant times t for
t between O and 1. Thus the contribution of the first term is
{.0000010955, .00014988) .

The second term under the integral in (10) involves the negative
of the matrix which occurs in the upper right-hand corner of (9). This
needs to be premultiplied by the objective function derivative (-1, 1)
and postmultiplied by h(xo) to yield

P b o s
)




2
-

-[ .024752, 1.25]
(-1’ 1) (

) (.0059) = [.00029208, .01475] .
-{-1.25 » —.024752]

Adding the two contributions yields the bounds
[.0002931755, .01489988] .

Since f0 = -1.41 , the value of f* must lie in the interval

[-1.42490, -1.41029] .

B -
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